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ABSTRACT
Oxygenic photosynthesis played an essential role in the accumulation of free oxygen (O2) 

at Earth’s surface, but questions persist regarding its evolutionary timeline. Manganese 
(Mn)-rich sedimentary rocks from the Mesoarchean Pongola Supergroup in South Africa 
have been invoked among the earliest evidence for O2-dependent Mn(II) oxidation and thus 
photosynthetic O2 production in oceans. However, as a singular suite of rocks, uncertainties 
persist about whether the evidence for O2 in the Pongola region has global implications. Here 
we report on another Mesoarchean Mn-rich iron formation in South China, dating back to 
ca. 2.88–2.80 Ga. The Dianzihe iron formation exhibits a positive correlation between Mn 
enrichment (MnO up to 7.08 wt%, Fe/Mn ratio down to 5.1) and negative δ56Fe values (−0.21
to −1.33‰; average = −0.91‰). This pattern requires oxygenated seawater (i.e., O2 > 10 μM)
at least to the seafloor, allowing not only for the oxidation of Fe(II) and Mn(II) but also for 
the preservation of Fe(Mn) oxyhydroxides until post-depositional modifications. Based on 
our findings in China alongside the distribution of Mn-rich iron formations in South Africa, 
we posit that a global distribution of oxygen oases, driven by cyanobacterial O2 production, 
already existed in the Mesoarchean.

INTRODUCTION
The production of O2 through oxygenic pho-

tosynthesis was crucial for developing com-
plex life dependent on aerobic respiration. It is 
believed that oxygenic photosynthesis facilitated 
the Great Oxidation Event (GOE) ca. 2.4‒2.2 Ga 
(Poulton et al., 2021), but the evolutionary time-
line of cyanobacteria—the earliest oxygenic 
photosynthesizers—remains uncertain due to 
lack of irrefutable paleontological evidence. For 
instance, interpretations of the structure and tex-
ture of Archean cyanobacteria microfossils have 
been subject to controversy (Knoll, 2003), while 
biomarkers in Archean sedimentary rocks have 
been susceptible to contamination and are not 
entirely diagnostic of oxygenic photosynthesis 
(Brocks, 2011). Molecular clock analyses have 

also been limited by factors such as database 
size, modeling approaches, and calibration 
methods, but appear to converge on a Paleoar-
chean−Mesoarchean timeframe for the origin 
of oxygenic photosynthesis (Sánchez-Baracaldo 
et al., 2022). Although redox-sensitive elements 
and their isotope signatures in the Archean sedi-
mentary rocks have suggested the existence of 
“oxygen oases” before the GOE (e.g., Czaja 
et al., 2012; Olson et al., 2013; Planavsky et al., 
2014; Kurzweil et al., 2016; Ossa Ossa et al., 
2018; Ostrander et al., 2021), the proposed time-
frame for the origin of oxygenic photosynthe-
sis varies widely from ca. 3.8 to 2.4 Ga (Lyons 
et al., 2014; Cardona, 2017). Clearly, more pre-
cise constraints on the evolutionary timeline of 
oxygenic photosynthesis are necessary.

Manganese is a unique redox-variable ele-
ment to track ancient O2 signals. Traditionally, 
the oxidation of Mn(II) to Mn(III/IV) oxyhy-
droxides (MnOx) was argued to require O2 given 
the high redox potential of MnOx/Mn(II) [e.g., 

1.23 V for MnO2/Mn(II)], and MnOx burial 
requires an oxygenated water column because 
of rapid reduction of MnOx coupled to the oxida-
tion of reductants (e.g., ferrous iron, organic mat-
ter) in anoxic waters. However, recent research 
has identified various O2-independent pathways 
for Mn(II) oxidation (Daye et al., 2019; Liu et al., 
2020), and Mn enrichment in sediments can also 
occur by coprecipitation of Mn(II) with calcite 
in anoxic waters (Herndon et al., 2018). Accord-
ingly, there is a lack of consensus on whether 
ancient Mn-rich sedimentary rocks are proxies 
for early oxygenation (Robbins et al., 2023). 
Considering these conflicting mechanisms, fully 
understanding the history of Earth’s oxygen lev-
els will remain elusive until we gain a deeper 
insight into the environmental significance of 
Mn-rich Archean sedimentary rocks.

The examination of Mn-rich iron formations 
in the ca. 2.99–2.87 Ga Pongola Supergroup 
in South Africa has been cited as the earliest 
evidence for O2-dependent Mn(II) oxidation 
and photosynthetic production of O2 in Earth’s 
ancient oceans (Crowe et al., 2013; Planavsky 
et al., 2014; Ossa Ossa et al., 2018). However, 
given the absence of contemporaneous Mn-rich 
sedimentary rocks from other cratons, questions 
arise whether the evidence for O2 in the Pon-
gola region (Eickmann et al., 2018) reflects local 
depositional conditions or has broader global 
implications. To address these uncertainties, we 
present new elemental and Fe isotopic data from 
a contemporaneous Mesoarchean Mn-rich iron 
formation from South China.

GEOLOGICAL BACKGROUND AND 
SAMPLES

The Kongling Complex, situated in the north-
ern portion of the Yangtze Craton, South China 
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(Figs. 1A and 1B), comprises primarily interme-
diate-felsic intrusions and amphibolite dated to 
ca. 3.0–2.6 Ga, as well as overlying sedimentary 
rocks (Guo et al., 2015). The latter are predomi-
nantly graphite-bearing and Al-rich metapelites 
(Gao et al., 1999), with minor marble, quartz-
ite, and iron formation, which were deposited 
on a continental shelf. These sedimentary rocks 
experienced multi-stage metamorphism since ca. 
2.8 Ga, reaching the amphibole–granulite facies 
(Qiu et al., 2000; Li et al., 2014). Our samples 
were collected from the Dianzihe iron formation 
within the metasedimentary rocks of the northern 
Kongling Complex (Figs. 1A and 1B). This iron 
formation is characterized by alternating lamina-
tions (Fig. S1 in the Supplementary Material1) 
composed of magnetite, quartz, apatite, Fe-Mn 
carbonates, Fe-Mn amphiboles, Fe-Mn pyrox-
enoid, and garnet (Figs. S2 and S3; Tables S1 and 
S2), indicative of a high-grade metamorphosed 
iron formation (Klein, 2005). Considering the 
preservation of alternating laminations and the 
relative immobility of major elements (i.e., Fe 
and Mn) during post-depositional alteration, the 
Fe-Mn system in the iron formation was unlikely 
to have been significantly altered (more informa-
tion on this and the analytical methods and data 
are presented in the Supplemental Material1).

RESULTS AND DISSCUSSION
Age of the Dianzihe Iron Formation

To determine the age of the Dianzihe iron for-
mation, zircon grains were separated from three 
iron formation samples and then analyzed using 
secondary ion mass spectrometry. The zircon 
crystals of magmatic origin yielded concordant 
207Pb/206Pb ages of 3305–2868 Ma (Figs. S5‒S7). 
The youngest three zircon crystals had an aver-
age 207Pb/206Pb age of ca. 2.88 Ga, representing 
the maximum depositional age of the Dianzihe 
iron formation. The sedimentary rocks hosting 
the iron formation were magmatically altered 
ca. 3.0–2.6 Ga (Guo et al., 2015) and meta-
morphosed ca. 2.8–2.75 Ga (Qiu et al., 2000; 
Li et al., 2014). The absence of zircon grains 
in the Dianzihe iron formation that are younger 
than 2.88 Ga suggests that the iron formation was 
deposited between ca. 2.88 and 2.80 Ga. This 
age model is consistent with geochronological 
constraints on the contemporaneous Dujiagou 
iron formation located in the northern Kongling 
Complex (Zhou et al., 2022) (Fig. 1).

Manganese Oxidation and O2 in the 
Mesoarchean Oceans

The Dianzihe iron formation samples are 
characterized by elevated MnO levels, reach-
ing up to 7.08 wt%, with an average of 3.25 wt% 
(Table S4). The Mn-rich minerals predominantly 
consist of carbonates, amphiboles, and pyrox-
enoids (Fig. S3). Relict Mn-rich carbonates are 
found within euhedral–subhedral Fe-Mn amphi-
boles and coexist with pyroxenoids (Fig. S2; 
Tables S1 and S2), implying that during meta-

morphism, Mn-rich carbonates transformed into 
Mn-rich amphiboles and pyroxenoids through 
decarbonation reactions:
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Accordingly, initial Mn enrichment in the 
Dianzihe iron formation was derived from Mn-
rich carbonates, which may have formed via 
(i) conversion of MnOx to Mn-rich carbonates 
during diagenesis (Planavsky et al., 2014; Ossa 
Ossa et al., 2018), or (ii) primary coprecipita-
tion of Mn(II) with calcite. The latter mecha-
nism formed Ca-Mn carbonates relying on the 
existence of calcite to act as nucleation sites 
and/or dissolution of calcite to contribute bicar-
bonate (Herndon et al., 2018; Wittkop et al., 
2020). However, the Mn-bearing carbonates 
in the Dianzihe iron formation are low-CaO 
(average 3.3 wt%) Fe-Mn carbonates (average 
MnO = 33.4 wt%, average FeO = 22.6 wt%) 
(Table S1), indicating that these Mn-rich car-
bonates were likely formed via diagenesis rather 
than coprecipitation of Mn(II) with calcite. 
Importantly, this implies that the original Mn-
rich mineral was MnOx.

Mn(II) oxidation has multiple pathways, 
including anoxygenic photosynthesis, pho-
tochemistry, and Mn(II) oxidation by O2. In 
the case of anoxygenic photosynthesis, there 
are two possible mechanisms. The first, as 
originally proposed by Johnson et al. (2013), 
has Mn(II) donating electrons directly to an 
ancestral reaction center in a manner akin to 
photoferrotrophy, but forming MnOx instead 
of Fe(OH)3. This reaction is theoretically plau-
sible, but to date no modern species using this 
metabolism have been identified. The second 
relies on H2S as the electron donor in co-cul-
tures involving a currently unknown mecha-
nism (Daye et  al., 2019). However, sulfide 
availability conflicts with the Fe(II)-rich envi-
ronment required for iron formation deposition 
(Konhauser et al., 2017). Likewise, although 
O2-independent photochemical oxidation of 
Mn(II) or rhodochrosite (MnCO3) is feasible 
under controlled laboratory conditions, it is 
limited by multiple factors, including inter-
ference from other elements, e.g., Fe(II), and 
limited rhodochrosite supply in the photic zone 
(Lyons et al., 2020).

Irrespective of the oxidation mechanism, 
preservation of MnOx is unlikely in anoxic 
waters due to its rapid reduction (e.g., on the 
order of days) coupled to the oxidation of reduc-
tants [e.g., Fe(II)], which is consistent with a 
shallow depth (e.g., <2‒10 m) of MnOx pen-

1Supplemental Material. Methods, additional 
information regarding the potential metamorphic and 
metasomatic influences, Figures S1–S9, and Tables 
S1–S4. Please visit https://doi​.org​/10​.1130​/GEOL​
.S.28299389 to access the supplemental material; 
contact editing@geosociety.org with any questions.

A

B

Figure 1.  (A) Schematic map of the Precambrian blocks in China. CB—Cathaysia Block; NCC—
Northern China Craton; SCS—South China Sea; TC—Tarim Craton; YC—Yangtze Craton. (B) 
Simplified geological map of the Kongling Complex (modified from Gao et al., 1999), showing 
the location of the Dianzihe iron formation (IF).
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etration into anoxic waters (Robbins et  al., 
2023). Previous studies have demonstrated that 
Mn-oxides begin to dissolve when O2 < 100 μM 
but can persist to become buried when bottom 
water O2 concentrations are lowered to ~10 μM 
(Johnson et al., 1992). Accordingly, MnOx in the 
Dianzihe iron formation were likely formed via 
O2-dependent Mn(II) oxidation in oxic seawa-
ter (i.e., O2 > 10 μM) ca. 2.88–2.80 Ga. This 
is supported by the negative Ce anomalies in 
the Dianzihe iron formation (Fig. S4) that are 
indicative of oxic seawater, since oxidation and 
removal of Ce are closely associated with Mn 
(oxyhydr)oxides.

The Fe isotope composition of the Dian-
zihe iron formation adds further evidence for 
oxygenated seawater and its redox structure in 
the Mesoarchean oceans. Given the substantial 
Fe isotope fractionation (up to ∼3‰ in δ56Fe) 
between precipitated Fe(III) oxyhydroxides 
and aqueous Fe(II) (Li et al., 2013), massive 
removal of high-δ56Fe Fe(III) oxyhydroxides 
would leave significant low-δ56Fe Fe(II) in sea-
water during iron formation deposition (Rouxel 
et al., 2005; Li et al., 2013). The δ56Fe values of 
the Dianzihe iron formation samples range from 
−0.21 to −1.33‰, with an average of −0.91‰ 
(Fig. 2). These δ56Fe values are comparable to 
the most δ56Fe-depleted and Mn-rich iron forma-
tions deposited shortly before or during the GOE 
(e.g., Kurzweil et al., 2016). We used a Rayleigh 
fractionation model (Fig. S8) to simulate the 
change in δ56Fe values of Fe oxyhydroxides and 
ambient seawater during deposition of the Dian-
zihe iron formation. The δ56Fe variation in the 
Dianzihe iron formation can best be explained 
by extensive oxidation of low-δ56Fe Fe(II) in 
oxygenated seawater. For instance, assuming 
δ56Fe values of a primary Fe(II) pool are −2‰ 
and −3‰, the oxidation of 61%–92% and 13%–
65% the Fe(II), respectively, can account for 
the deposition of the Dianzihe iron formation.

The δ56Fe values of the Dianzihe iron for-
mation are also positively correlated with Mn 
enrichment (i.e., Fe/Mn ratio) (Fig. 2). This cor-
relation suggests that the iron formation was 
deposited in oxygenated seawater that may 
have a depth-related redox gradient (Fig. 3). 
Given the strong kinetic limitation of Mn(II) 
oxidation by O2 (Morgan, 2005) and the poten-
tial oxidation of Fe(II) by Mn(III)/Mn(IV), the 
preferential precipitation of high-δ56Fe Fe(III) 
oxyhydroxides would have resulted in deposi-
tion of the iron formation samples with high 
Fe/Mn ratio, leading to a decrease in the δ56Fe 
values and Fe/Mn ratios in suboxic (e.g., 1‒10 
μM O2) seawater. This Mn(II)- and low-δ56Fe 
Fe(II)-bearing seawater, which may also have 
contained low-δ56Fe Fe(II) produced by dis-
similatory iron reduction, could have upwelled 
or advected into a shallower, oxic (e.g., >10 
μM O2) environment. Consequently, the later-
stage precipitation of Fe(III) oxyhydroxides and 

MnOx in oxic seawater would have lighter Fe 
isotope compositions and lower Fe/Mn ratios 
(Busigny et al., 2014; Kurzweil et al., 2016; 
Huang et al., 2021). Therefore, the oxidation 
of Fe(II) and Mn(II) in suboxic‒oxic seawater 
(e.g., 1 to >10 μM O2) would naturally establish 

a positive correlation between low δ56Fe values 
and Mn enrichment in iron formations.

The alternating laminations in the Dianzihe 
iron formation suggest that the iron formation 
was deposited below wave base (e.g., 30‒50 m). 
This supports that the oxygenated seawater (i.e., 

Figure 2. The positive correlation between δ56Fe values and Fe/Mn ratios in iron formations (IFs) 
supports the existence of oxygenated seawater before, during, and after the Great Oxidation 
Event (see main text for details). Data sources are provided in Fig. S9 (see text footnote 1).

Figure 3.  A model for deposition of the Mn-rich Dianzihe iron formation in a Mesoarchean 
oxygen oasis. With the preferential precipitation of high-δ56Fe Fe(III) oxyhydroxides, the oxy-
genated seawater gradually evolved toward lighter Fe isotope compositions and lower Fe/
Mn ratios. Microbial dissimilatory iron reduction (DIR) may have produced another source of 
low-δ56Fe Fe(II). The oxidation of upwelling Mn(II) and low-δ56Fe Fe(II) eventually formed the 
Mn-rich iron formation in oxic (i.e., >10 μM O2) seawater.
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1 to >10 μM O2) from which the iron forma-
tion deposited likely existed in localized shal-
low marine environments (e.g., nearshore) in 
the Mesoarchean oceans, which is consistent 
with previous estimates of 1 to a few tens of μM 
O2 in the Archean oxygen oases (Czaja et al., 
2012; Olson et al., 2013; Ossa Ossa et al., 2018). 
Given that temporal distribution of low-δ56Fe 
Mn-rich iron formations was closely associated 
with oxygenation events throughout the Precam-
brian (Huang et al., 2021) (Fig. 4), the regional-
scale oxygenated seawater from which Mn-rich 
iron formations deposited was unlikely to have 
resulted from non-photosynthetic mechanisms, 
indicative of cyanobacterial O2 production at 
that time.

CONCLUSIONS AND IMPLICATIONS
Combined geochronological, multiple-scale 

petrographic, major trace element, and Fe iso-
tope analyses of the Mesoarchean Mn-rich 
Dianzihe iron formation in South China reveal 
the precipitation of MnOx, simultaneous Mn 
enrichment, and a low-δ56Fe signal during depo-
sition of this iron formation. Our findings pro-
vide compelling evidence for cyanobacterial O2 
production at that time. The observed correla-
tion between δ56Fe values and Mn enrichment 
in iron formations is linked to O2 level, possibly 
reflecting a depth-related redox gradient where 
O2 concentrations varied from a few to >10 μM.

The earliest known Mn-rich iron formations, 
found in the Pongola Supergroup and Kongling 
Complex (Fig. 4), date back to the Mesoarchean, 

supporting the notion that oxygenic photosyn-
thesis was already established at that time (e.g., 
Crowe et al., 2013; Planavsky et al., 2014; Ossa 
Ossa et al., 2018). More importantly, the two 
locations underwent distinct geological histo-
ries ca. 3.0–2.8 Ga (Guo et al., 2015; Luskin 
et al., 2019), suggesting that the two Mn-rich 
iron formations occupied different paleogeo-
graphic locations during the Mesoarchean. The 
significance of this is that the oxygen oases, 
driven by cyanobacterial O2 production, may 
have already been globally distributed in Meso-
archean oceans.
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